Predicting drug-target interactions by dual-network integrated logistic matrix factorization
نویسندگان
چکیده
In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.
منابع مشابه
Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
MOTIVATION Identifying interactions between drug compounds and target proteins has a great practical importance in the drug discovery process for known diseases. Existing databases contain very few experimentally validated drug-target interactions and formulating successful computational methods for predicting interactions remains challenging. RESULTS In this study, we consider four different...
متن کاملNeighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction
In pharmaceutical sciences, a crucial step of the drug discovery process is the identification of drug-target interactions. However, only a small portion of the drug-target interactions have been experimentally validated, as the experimental validation is laborious and costly. To improve the drug discovery efficiency, there is a great need for the development of accurate computational approache...
متن کاملPredicting Drug–Target Interactions Using Probabilistic Matrix Factorization
Quantitative analysis of known drug-target interactions emerged in recent years as a useful approach for drug repurposing and assessing side effects. In the present study, we present a method that uses probabilistic matrix factorization (PMF) for this purpose, which is particularly useful for analyzing large interaction networks. DrugBank drugs clustered based on PMF latent variables show pheno...
متن کاملPredicting Unknown Interactions Between Known Drugs and Targets via Matrix Completion
Drug-target interactions map patterns, associations and relationships between drugs and target proteins. Identifying interactions between drug and target is critical in drug discovery, but biochemically validating these interactions are both laborious and expensive. In this paper, we propose a novel interaction profiles based method to predict potential drug-target interactions by using matrix ...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کامل